Affordable Access

Ribonucleic Acid and Protein Synthesis in Rhizophlyctis rosea Zoospores

Publication Date
  • Biology


LéJohn, Herbert B. (Purdue University, Lafayette, Ind.), and James S. Lovett. Ribonucleic acid and protein synthesis in Rhizophlyctis rosea zoospores. J. Bacteriol. 91:709–717. 1966.—The uniflagellate zoospores of Rhizophlyctis rosea display active motility and a high endogenous respiratory metabolism, but neither growth nor net ribonucleic acid (RNA) or protein synthesis can be measured by ordinary procedures. Nevertheless, synthesis can be detected with isotopic precursors. Uracil-C14 is incorporated slowly into both the soluble and ribosomal RNA. Analysis of zoospore extracts (on diethylaminoethyl cellulose columns or sucrose gradients) after various periods of labeling suggested that most of the uracil incorporation represents slow synthesis of ribosomal precursor RNA and, ultimately, ribosomes. Actinomycin D caused an 80% inhibition of uracil incorporation. The most rapidly labeled RNA was susceptible to extensive degradation in cells treated with actinomycin, but the percentage of stable RNA increased with the time of incorporation before addition of the antibiotic. Neither the effects of actinomycin nor the results of chase experiments have established unequivocally the existence of turnover or the presence of a short-lived “messenger” fraction in motile spores. Both leucine and methionine were slowly incorporated into a spectrum of cellular proteins. The methyl group of C14-methylmethionine also served as a methyl donor for the methylation of soluble RNA but not of ribosomal RNA. The observations that some of the newly synthesized RNA and protein occur in the intact 82S ribosomes and that actinomycin inhibits the low level of protein synthesis provide some indirect evidence for a very low rate of “messenger” synthesis and turnover in zoospores.


Seen <100 times