Affordable Access

Access to the full text

Research on human performance evaluation model based on neural network and data mining algorithm

Authors
  • Liang, Wei1, 2
  • Li, Tingyi2
  • 1 Shandong Agriculture and Engineering University, Jinan, 250100, China , Jinan (China)
  • 2 Wonkwang University, Iksan-si, 54538, Korea , Iksan-si (South Korea)
Type
Published Article
Journal
EURASIP Journal on Wireless Communications and Networking
Publisher
Springer International Publishing
Publication Date
Sep 10, 2020
Volume
2020
Issue
1
Identifiers
DOI: 10.1186/s13638-020-01776-4
Source
Springer Nature
Keywords
License
Green

Abstract

In order to effectively evaluate personnel performance, a distributed data mining algorithm for spatial networks based on BP neural wireless network is proposed. In the cloud computing environment, an excavator is used to construct multiple input multiple output spatial network data, analyze the data structure, and perform redundant data compression of massive data through time-frequency feature extraction. Combined with the adaptive matching filtering method, the characteristics of the data are matched. The spatial frequency feature extraction method is used to locate the features of the multiple-input multiple-output spatial network data. In order to improve the accuracy of data mining, the BP neural network is used to classify and identify the extracted data features to achieve the optimization of data mining. A wireless sensor network is a wireless network composed of a large number of stationary or moving sensors in a self-organizing and multi-hop manner. It cooperatively senses, collects, processes, and transmits the information of the perceived objects in the geographical area covered by the network and finally puts these The information is sent to the owner of the network. This algorithm improves the accuracy of personnel performance evaluation, simultaneously establishes a hierarchical analysis and quantitative evaluation model for the performance of government managers, and adjusts the results of hierarchical statistical analysis on government administrators as needed. The performance evaluation and optimization of government administrators were introduced. The empirical analysis results show that the method has higher accuracy for government managers’ performance evaluation, higher efficiency of big data processing, and better integration.

Report this publication

Statistics

Seen <100 times