Affordable Access

Access to the full text

Relative Entropy of Random States and Black Holes

Authors
  • Kudler-Flam, Jonah
Type
Published Article
Publication Date
Mar 16, 2021
Submission Date
Feb 09, 2021
Identifiers
DOI: 10.1103/PhysRevLett.126.171603
Source
Biblioteca Digital da Memória Científica do INPE
License
Yellow
External links

Abstract

We study the relative entropy of highly excited quantum states. First, we sample states from the Wishart ensemble and develop a large-N diagrammatic technique for the relative entropy. The solution is exactly expressed in terms of elementary functions. We compare the analytic results to small-N numerics, finding precise agreement. Furthermore, the random matrix theory results accurately match the behavior of chaotic many-body eigenstates, a manifestation of eigenstate thermalization. We apply this formalism to the AdS/CFT correspondence where the relative entropy measures the distinguishability between different black hole microstates. We find that black hole microstates are distinguishable even when the observer has arbitrarily small access to the quantum state, though the distinguishability is nonperturbatively small in Newton's constant. Finally, we interpret these results in the context of the subsystem Eigenstate Thermalization Hypothesis (sETH), concluding that holographic systems obey sETH up to subsystems half the size of the total system.

Report this publication

Statistics

Seen <100 times