Affordable Access

Regulation of Photosynthetic Electron Transport in Intact Spinach Chloroplasts: II. MECHANISM OF SALT-INDUCED INCREASE IN OXALOACETATE PHOTOREDUCTION 1

  • A. Bryan MacKay
  • Thomas V. Marsho
Publication Date
Oct 01, 1980
  • Biology


The main focus of this study was to determine the mechanism by which certain exogenous monovalent salts stimulate rates of net O2 evolution linked to oxaloacetate reduction in intact spinach chloroplasts. The influence of salts on the dicarboxylate translocator involved in the transport of oxaloacetate and on the activity and activation of the chloroplast enzyme NADP-malate dehydrogenase, which mediates electron transport to oxaloacetate, was examined. High concentrations of KCl (155 millimolar) increased the apparent Km for oxaloacetate but did not significantly alter the maximal velocity of uptake. Likewise, external salts (KCl, MgCl2, or KH2PO4) had minimal effects on the magnitude of light activation of NADP-malate dehydrogenase. In contrast, measurements of chloroplast NADP-malate dehydrogenase activity (after release by osmotic shock) showed a marked dependence on salt concentration. Rates were stimulated approximately 2-fold by both monovalent (optimally 75 millimolar) and divalent (optimally 20 millimolar) salts. It was inferred that the salt-induced increase in net rates of O2 evolution linked to oxaloacetate reduction is due, at least in part, to stimulation of NADP-malate dehydrogenase caused by monovalent cation permeability of the chloroplast inner envelope membrane.

Report this publication


Seen <100 times