Affordable Access

Regulation of epidermal growth factor-stimulated formation of inositol phosphates in A-431 cells by calcium and protein kinase C.

  • Wahl, M
  • Carpenter, G
Published Article
Journal of Biological Chemistry
American Society for Biochemistry & Molecular Biology (ASBMB)
Publication Date
Jun 05, 1988
PMID: 3259577


Epidermal growth factor (EGF) treatment of A-431 cells induces a biphasic increase in the levels of inositol phosphates. The growth factor produces an initial, rapid increase in the level of inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) due to hydrolysis of phosphatidyl-inositol-4,5-bisphosphate (Wahl, M., Sweatt, J. D., and Carpenter, G. (1987) Biochem. Biophys. Res. Commun. 142, 688-695). The level of inositol 1,3,4,5-tetrakisphosphate (Ins-1,3,4,5-P4) also rises rapidly in response to treatment with EGF. The initial formation (less than 1 min) of Ins-1,4,5-P3 and Ins-1,3,4,5-P4 does not require Ca2+ present in the culture medium. However, the addition of Ca2+ to the medium at levels of 100 microM or greater potentiates the growth factor-stimulated increases in the levels of all inositol phosphates at later times after EGF addition (1-60 min). The data suggest that EGF-receptor complexes initially stimulate the enzyme phospholipase C in a manner that is independent of an influx of extracellular Ca2+. The presence of Ca2+ in the medium allows prolonged growth factor activation of phospholipase C. Treatment of A-431 cells with Ca2+ ionophores (A23187 and ionomycin) did not mimic the activity of EGF in producing a rapid increase in the formation of the Dowex column fraction containing Ins-1,4,5-P3, Ins-1,3,4,5-P4, and inositol 1,3,4-trisphosphate (InsP3). However, the initial EGF-stimulated formation of inositol phosphates was substantially diminished in cells loaded with the Ca2+ chelator Quin 2/AM. EGF receptor occupancy studies indicated that maximal stimulation of InsP3 accumulation by EGF requires nearly full (75%) occupancy of available EGF binding sites, while half-maximal stimulation requires 25% occupancy. 12-O-Tetradecanoylphorbol-13-acetate (TPA), an exogenous activator of Ca2+/phospholipid-dependent protein kinase (protein kinase C), causes a dramatic, but transient, inhibition of the EGF-stimulated formation of inositol phosphates. Tamoxifen and sphingosine, reported pharmacologic inhibitors of protein kinase C activity, potentiate the capacity of EGF to induce formation of inositol phosphates. Neither TPA nor tamoxifen significantly affects the 125I-EGF binding capacity of A-431 cells; however, TPA appeared to enhance internalization of the ligand. Ligand occupation of the EGF receptor on the A-431 cell appears to initiate a complex signaling mechanism involving production of intracellular messengers for Ca2+ mobilization and activation of protein kinase C.(ABSTRACT TRUNCATED AT 400 WORDS)

Report this publication


Seen <100 times