Affordable Access

Regenerative amacrine cell depolarization and formation of on-off ganglion cell response.

Authors
  • Werblin, F S
Type
Published Article
Journal
The Journal of physiology
Publication Date
Jan 01, 1977
Volume
264
Issue
3
Pages
767–785
Identifiers
PMID: 845823
Source
Medline
License
Unknown

Abstract

1. Recordings from amacrine and ganglion cells in the mudpuppy retina suggest mechanisms whereby the relatively slow, sustained light responses measured in bipolar cells are converted to rapid, brief, transient activity in the on-off ganglion cells. 2. Double-barrel electrodes were used to control the membrane potential under voltage clamp. The clamp revealed synaptic currents, but eliminated the otherwise obvious spike activity elicited by steps of illumination in both amacrine and ganglion cells, suggesting that the spikes are initiated near the somata. 3. The synaptic current in the on-off ganglion cells was biphasic: a brief inward (depolarizing) membrane current preceded a transient outward (hyperpolarizing) membrane current by about 20 msec. Each component could be isolated by polarizing the membrane to a level near the reversal potential for the other. Each was apparently due to a transient conductance increase of sawtooth shape with a 40 msec time to peak and a decay longer than 400 msec. 4. Synaptic membrane current in amacrine cells was monophasic and inward (depolarizing) of similar sawtooth shape at all potential levels. It was apparently mediated by a conductance increase to ions with a reversal potential more positive than the dark level. 5. When amacrine cells were depolarized in the dark under voltage clamp, a large transient inward membrane current with threshold within 4 mV of the dark level was generated. This regenerative event is capable of boosting a small, 4 mV e.p.s.p. to more than 30 mV in a few milliseconds, thereby generating the leading edge of a rapid sawtooth response. 6. The results suggest that the rapid transient on-off activity in ganglion cells is mediated by opposing sawtooth shaped synaptic currents with different latencies. It is inferred that each of these antagonistic imputs is generated by a regenerative depolarization in amacrine cells which then form synaptic inputs to the ganglion cells.

Report this publication

Statistics

Seen <100 times