Affordable Access

Access to the full text

Real-time high-bandwidth mm-wave 5G NR signal transmission with analog radio-over-fiber fronthaul over multi-core fiber

Authors
  • Rommel, Simon1
  • Grivas, Evangelos2
  • Cimoli, Bruno1
  • Dodane, Delphin3
  • Morales, Alvaro1
  • Pikasis, Evangelos2
  • Bourderionnet, Jerome3
  • Feugnet, Gilles3
  • Barros Carvalho, Juliana1
  • Katsikis, Michail4
  • Ntontin, Konstantinos4
  • Kritharidis, Dimitrios4
  • Spaleniak, Izabela5
  • Mitchell, Paul5
  • Dubov, Mykhaylo5
  • Tafur Monroy, Idelfonso1
  • 1 Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands , Eindhoven (Netherlands)
  • 2 Eulambia Advanced Technologies, Agia Paraskevi, Athens, 153 42, Greece , Agia Paraskevi, Athens (Greece)
  • 3 Thales Research and Technology, Route Départementale, Palaiseau, 91120, France , Palaiseau (France)
  • 4 Intracom Telecom, Markopoulou Avenue, Peania, Athens, 190 02, Greece , Peania, Athens (Greece)
  • 5 Optoscribe Ltd, Unit 1, Rosebank Technology Park, Livingston, EH54 7EJ, UK , Livingston (United Kingdom)
Type
Published Article
Journal
EURASIP Journal on Wireless Communications and Networking
Publisher
Springer International Publishing
Publication Date
Feb 26, 2021
Volume
2021
Issue
1
Identifiers
DOI: 10.1186/s13638-021-01914-6
Source
Springer Nature
Keywords
License
Green

Abstract

This article presents an experimental demonstration of a high-capacity millimeter-wave 5G NR signal transmission with analog radio-over-fiber (ARoF) fronthaul over multi-core fiber and full real-time processing. The demonstration validates the core of the blueSPACE fronthaul architecture which combines ARoF fronthaul with space division multiplexing in the optical distribution network to alleviate the fronthaul capacity bottleneck and maintain a centralized radio access network with fully centralized signal processing. The introduction of optical beamforming in the blueSPACE architecture brings true multi-beam transmission and enables full spatial control over the RF signal. The proposed ARoF architecture features a transmitter that generates the ARoF signal and an optical signal carrying a reference local oscillator employed for downconversion at the remote unit from a single RF reference at the central office. A space division multiplexing based radio access network with multi-core fibre allows parallel transport of the uplink ARoF signal and reference local oscillator at the same wavelength over separate cores. A complete description of the real-time signal processing and experimental setup is provided and system performance is evaluated. Transmission of an 800 MHz wide extended 5G NR fronthaul signal over a 7-core fibre is shown with full real-time signal processing, achieving 1.4 Gbit/s with a bit error rate <3.8×10-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<3.8\times 10^{-3}$$\end{document} and thus below the limit for hard-decision forward error correction with 7% overhead.

Report this publication

Statistics

Seen <100 times