Affordable Access

Real time quantitative Raman spectroscopy of supported metal oxide catalysts without the need of an internal standard.

Authors
Type
Published Article
Journal
Physical Chemistry Chemical Physics
1463-9076
Publisher
The Royal Society of Chemistry
Publication Date
Volume
7
Issue
1
Pages
211–216
Identifiers
PMID: 19785192
Source
Medline

Abstract

In continuation to the possibility of using a combined operando Raman/UV-Vis-NIR set-up for conducting qualitative Raman spectroscopy, the possibilities for quantitative Raman spectroscopic measurements of supported metal oxide catalysts under working conditions without the need of an internal standard have been explored. The dehydrogenation of propane over an industrial-like 13 wt% Cr/Al203 catalyst was used as a model system. During reaction, the catalytic solid was continuously monitored by both UV-Vis-NIR and Raman spectroscopy. As the dehydrogenation proceeds, the catalyst gradually darkens due to coke formation and consequently the UV-Vis-NIR diffuse reflectance and Raman scattered signal progressively decrease in intensity. The formation of coke was confirmed with TEOM, TGA and Raman. The measured Raman spectra can be used as a quantitative measure of the amount of carbonaceous deposits at the catalyst surface provided that a correction factor G(R(infinity)) is applied. This factor can be directly calculated from the corresponding UV-Vis-NIR diffuse reflectance spectra. The validity of the approach is compared with one, in which an internal boron nitride standard is added to the catalytic solid. It will be shown that the proposed methodology allows measurement of the amount of carbonaceous deposits on a catalyst material inside a reactor as a function of reaction time and catalyst bed height. As a consequence, an elegant technique for on-line process control of e.g. an industrial propane dehydrogenation reactor emerges.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments
F