Affordable Access

Real-time 3-D dark-field microscopy for the validation of the cross-linking process of alginate microcapsules.

Authors
Type
Published Article
Journal
Biomaterials
0142-9612
Publisher
Elsevier
Publication Date
Volume
26
Issue
32
Pages
6386–6393
Identifiers
PMID: 15913773
Source
Medline
License
Unknown

Abstract

Alginate-based microencapsulation is a promising method for long-term maintenance of cellular and membrane function of the cells and tissue fragments required for in vitro and in vivo biosensors, for tissue engineering and particularly for immunoisolation of non-autologous transplants. Microcapsules of high mechanical strength and optimum permeability can be produced by injection of BaCl2 crystals into alginate droplets before they come into contact with external Ba2+. A key requirement is that the system parameters (number of crystals, speed of the crystal stream etc.) are properly adjusted according to the mannuronic and guluronic acid ratio and the average molecular mass of the alginate as well as to the diameter of the microcapsules. Robust, reliable, rapid and low-cost validation tools are, therefore, needed for assurance of the microcapsule quality. Here, we describe a novel three-dimensional (3-D) dark-field microscopy that allows the real-time measurement of the number and spatial distribution of the injected Ba2+ ions throughout the microcapsules after treatment with sulphate. This novel method requires only a conventional microscope equipped with three polarising filters and a double aperture stop. In contrast to confocal laser scanning microscopy images, peripherally attached BaSO4 precipitates can clearly be distinguished from internal ones. The data also demonstrate that several steps of the alginate gelling process must be improved before such immunoisolation can be used in patients.

Statistics

Seen <100 times