Affordable Access

Access to the full text

Rationality for isobaric automorphic representations: the CM-case

Authors
  • Grobner, Harald1
  • 1 University of Vienna, Fakultät für Mathematik, Oskar-Morgenstern-Platz 1, Vienna, 1090, Austria , Vienna (Austria)
Type
Published Article
Journal
Monatshefte für Mathematik
Publisher
Springer Vienna
Publication Date
May 21, 2018
Volume
187
Issue
1
Pages
79–94
Identifiers
DOI: 10.1007/s00605-018-1188-5
Source
Springer Nature
Keywords
License
Green

Abstract

In this note we prove a simultaneous extension of the author’s joint result with M. Harris for critical values of Rankin–Selberg L-functions L(s,Π×Π′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(s,\Pi \times \Pi ')$$\end{document} (Grobner and Harris in J Inst Math Jussieu 15:711–769, 2016, Thm. 3.9) to (i) general CM-fields F and (ii) cohomological automorphic representations Π′=Π1⊞⋯⊞Πk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Pi '=\Pi _1\boxplus \cdots \boxplus \Pi _k$$\end{document} which are the isobaric sum of unitary cuspidal automorphic representations Πi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Pi _i$$\end{document} of general linear groups of arbitrary rank over F. In this sense, the main result of these notes, cf. Theorem 1.9, is a generalization, as well as a complement, of the main results in Raghuram (Forum Math 28:457–489, 2016; Int Math Res Not 2:334–372, 2010. https://doi.org/10.1093/imrn/rnp127), and Mahnkopf (J Inst Math Jussieu 4:553–637, 2005).

Report this publication

Statistics

Seen <100 times