Affordable Access

Rapid reversible formation of a metastable subgel phase in saturated diacylphosphatidylcholines.

  • R Koynova
  • B G Tenchov
  • S Todinova
  • P J Quinn
Publication Date
Jun 01, 1995


Formation of well ordered lamellar subgel (SGII) phase in aqueous dispersions of L-dipalmitoylphosphatidylcholine upon cooling from the lamellar gel phase, without low-temperature equilibration, is observed in real time using synchrotron x-ray diffraction. It has the same lamellar repeat period as the gel phase from which it was formed but differs in its wide-angle diffraction pattern. The SGII phase forms at about 7 degrees C upon cooling at 2 degrees C/min. In temperature jump experiments at 1 degree C/s from 50 to -5 degrees C, the relaxation time of the lamellar gel-SGII transition is found to be approximately 15 s. The conversion between the lamellar gel and SGII phase is cooperative and rapidly reversible. Upon heating, it coincides in temperature with an endothermic event with a calorimetric enthalpy of 0.35 kcal/mol, the so-called sub-subtransition. Similar sub-subtransitions are also observed calorimetrically at temperatures approximately 10 degrees C below the subtransition, without low-temperature storage, in aqueous dispersions of L-dimyristoylphosphatidylcholine and L-distearoylphosphatidylcholine, but not in racemic DL-dipalmitoylphosphatidylcholine. The formation of the equilibrium lamellar crystalline Lc phase appears to take place only from within the SGII phase.


Seen <100 times