Affordable Access

Access to the full text

Rapid and controllable synthesis of Mn2O3 nanorods via a sonochemical method for supercapacitor electrode application

Authors
  • Amirtharaj, S. Nelson1, 2
  • Mariappan, M.2
  • 1 T. B. M. L. College, Porayar, Tamilnadu, 609307, India , Porayar (India)
  • 2 Thiru. Vi. Ka. Govt. Arts College, Thiruvarur, Tamilnadu, 610003, India , Thiruvarur (India)
Type
Published Article
Journal
Applied Physics A
Publisher
Springer-Verlag
Publication Date
Jul 19, 2021
Volume
127
Issue
8
Identifiers
DOI: 10.1007/s00339-021-04774-5
Source
Springer Nature
Keywords
Disciplines
  • Article
License
Yellow

Abstract

Mn2O3 is a significant candidate for various applications. In the present work, the Mn2O3 nanorods have been successfully prepared through a facile sonochemical method with the aid of a cetyl trimethyl ammonium bromide (CTAB) template. Systematic analyses were done to confirmes the formation and morphological properties of the Mn2O3 materials. It exhibits superior supercapacitor behavior with an electric double layer capacitor-based charge storage mechanism. The freshly prepared Mn2O3 nanorods render the maximum specific capacitance of 647 Fg−1 at a scan rate of 5 mVs−1, whereas the galvanostatic charge/discharge studies offer the specific capacitance of 656 Fg−1 at a current density of 1 Ag−1. The Mn2O3 nanorods provide the maximum energy and power densities of 91.1 Wh Kg−1 and 1525 Wkg−1, respectively. In addition, the cyclic stability analysis exhibits only 12% initial capacitance degradation over 3000 CV cycles at a scan rate of 100 mVs−1. The hopeful outcomes demonstrate the significance of the Mn2O3 nanorods as electrode material for supercapacitor devices.

Report this publication

Statistics

Seen <100 times