# Quantum Entangled Fractional Topology and Curvatures

- Authors
- Publication Date
- Mar 13, 2020
- Source
- HAL-ENAC
- Keywords
- Language
- English
- License
- Unknown
- External links

## Abstract

We propose a two-spin quantum-mechanical model with applied magnetic fields acting on the Poincar\'e-Bloch sphere, to reveal a new class of topological energy bands with Chern number one half for each spin-1/2. The mechanism behind this fractional topology is a two-spin product state at the north pole and a maximally entangled state close to the south pole. The fractional Chern number of each spin can be measured through the magnetizations at the poles. We study a precise protocol where the spin dynamics in time reflects the Landau-Zener physics associated with energy band crossing effects. We show a correspondence between the two-spin system and topological bilayer models on a honeycomb lattice. These models describe semimetals with a nodal ring surrounding the region of entanglement.