Affordable Access

Quantum Backreaction on Three-Dimensional Black Holes and Naked Singularities

Authors
  • Casals, Marc
  • Fabbri, Alessandro
  • Martínez, Cristián
  • Zanelli, Jorge
Publication Date
Aug 18, 2016
Source
INSPIRE-HEP
Keywords
License
Unknown
External links

Abstract

We analytically investigate backreaction by a quantum scalar field on two rotating Bañados-Teitelboim-Zanelli (BTZ) geometries: that of a black hole and that of a naked singularity. In the former case, we explore the quantum effects on various regions of relevance for a rotating black hole space-time. We find that the quantum effects lead to a growth of both the event horizon and the radius of the ergosphere, and to a reduction of the angular velocity, compared to the unperturbed values. Furthermore, they give rise to the formation of a curvature singularity at the Cauchy horizon and show no evidence of the appearance of a superradiant instability. In the case of a naked singularity, we find that quantum effects lead to the formation of a horizon that shields it, thus supporting evidence for the rôle of quantum mechanics as a cosmic censor in nature. / We analytically investigate backreaction by a quantum scalar field on two rotating Ba\~nados-Teitelboim-Zanelli (BTZ) geometries: that of a black hole and that of a naked singularity. In the former case, we explore the quantum effects on various regions of relevance for a rotating black hole space-time. We find that the quantum effects lead to a growth of both the event horizon and the radius of the ergosphere, and to a reduction of the angular velocity, compared to the unperturbed values. Furthermore, they give rise to the formation of a curvature singularity at the Cauchy horizon and show no evidence of the appearance of a superradiant instability. In the case of a naked singularity, we find that quantum effects lead to the formation of a horizon that shields it, thus supporting evidence for the r\^ole of quantum mechanics as a cosmic censor in nature.

Report this publication

Statistics

Seen <100 times