Affordable Access

Quantitative material decomposition methods for X-ray spectral CT

  • Su, Ting
Publication Date
Jun 28, 2018
External links


X-ray computed tomography (X-ray CT) plays an important part in non-invasive imaging since its introduction. During the past few years, numerous technological advances in X-ray CT have been observed, including spectral CT, which uses photon counting detectors (PCDs) to discriminate transmitted photons corresponding to selected energy bins in order to obtain spectral information with one single acquisition. Spectral CT enables us to overcome many limitations of the conventional CT techniques and opens up many new application possibilities, among which quantitative material decomposition is the hottest topic. A number of material decomposition methods have been reported and different experimental systems are under development for spectral CT. According to the type of data on which the decomposition step operates, we have projection domain method (decomposition before reconstruction) and image domain method (decomposition after reconstruction). The commonly used decomposition is based on least square criterion, named proj-LS and ima-LS method. However, the inverse problem of material decomposition is usually ill-posed and the X-ray spectral CT measurements suffer from Poisson photon counting noise. The standard LS criterion can lead to overfitting to the noisy measurement data. In the present work, we have proposed a least log-squares criterion for projection domain method to minimize the errors on linear attenuation coefficient: proj-LLS method. Furthermore, to reduce the effect of noise and enforce smoothness, we have proposed to add a patchwise regularization term to penalize the sum of the square variations within each patch for both projection domain and image domain decomposition, named proj-PR-LLS and ima-PR-LS method. The performances of the different methods were evaluated by spectral CT simulation studies with specific phantoms for different applications: (1) Medical application: iodine and calcium identification. The decomposition results of the proposed methods show that calcium and iodine can be well separated and quantified from soft tissues. (2) Industrial application: ABS-flame retardants (FR) plastic sorting. Results show that 3 kinds of ABS materials with different flame retardants can be separated when the sample thickness is favorable. Meanwhile, we simulated spectral CT imaging with a PMMA phantom filled with Fe, Ca and K solutions. Different acquisition parameters, i.e. exposure factor and number of energy bins were simulated to investigate their influence on the performance of the proposed methods for iron determination.

Report this publication


Seen <100 times