Quantifying Fibrillar Collagen Organization with Curvelet Transform-Based Tools.
- Authors
- Type
- Published Article
- Journal
- Journal of Visualized Experiments
- Publisher
- MyJoVE Corporation
- Publication Date
- Nov 11, 2020
- Issue
- 165
- Identifiers
- DOI: 10.3791/61931
- PMID: 33252107
- Source
- Medline
- Language
- English
- License
- Unknown
Abstract
Fibrillar collagens are prominent extracellular matrix (ECM) components, and their topology changes have been shown to be associated with the progression of a wide range of diseases including breast, ovarian, kidney, and pancreatic cancers. Freely available fiber quantification software tools are mainly focused on the calculation of fiber alignment or orientation, and they are subject to limitations such as the requirement of manual steps, inaccuracy in detection of the fiber edge in noisy background, or lack of localized feature characterization. The collagen fiber quantitation tool described in this protocol is characterized by using an optimal multiscale image representation enabled by curvelet transform (CT). This algorithmic approach allows for the removal of noise from fibrillar collagen images and the enhancement of fiber edges to provide location and orientation information directly from a fiber, rather than using the indirect pixel-wise or window-wise information obtained from other tools. This CT-based framework contains two separate, but linked, packages named "CT-FIRE" and "CurveAlign" that can quantify fiber organization on a global, region of interest (ROI), or individual fiber basis. This quantification framework has been developed for more than ten years and has now evolved into a comprehensive and user-driven collagen quantification platform. Using this platform, one can measure up to about thirty fiber features including individual fiber properties such as length, angle, width, and straightness, as well as bulk measurements such as density and alignment. Additionally, the user can measure fiber angle relative to manually or automatically segmented boundaries. This platform also provides several additional modules including ones for ROI analysis, automatic boundary creation, and post-processing. Using this platform does not require prior experience of programming or image processing, and it can handle large datasets including hundreds or thousands of images, enabling efficient quantification of collagen fiber organization for biological or biomedical applications.