Affordable Access

Pseudogap and quantum-transition phenomenology in HTS cuprates

Authors
  • Tallon, J. L.
  • Loram, J. W.
  • Panagopoulos, C.
Type
Preprint
Publication Date
Nov 13, 2002
Submission Date
Nov 03, 2002
Identifiers
arXiv ID: cond-mat/0211048
Source
arXiv
License
Unknown
External links

Abstract

The low-energy excitation spectrum of HTS cuprates is examined in the light of thermodynamic, transport, quasiparticle and spin properties. Changes in the thermodynamic spectrum associated with the normal-state pseudogap disappear abruptly at a critical doping state, $p_{crit}$ = 0.19 holes per Cu. Moreover, ARPES data at 100K show that heavily damped quasiparticles (QP) near ($\pi$,0) suddenly recover long lifetimes at $p_{crit}$, reflecting an abrupt loss of scattering from AF spin fluctuations. This picture is confirmed by $\mu$SR zero-field relaxation measurements which indicate the presence of a novel quantum glass transition at $p_{crit}$. Consistent with this picture resistivity studies on thin films of Y$_{0.7}$Ca$_{0.3}$Ba$_2$Cu$_3$O$_{7-\delta}$ reveal linear behavior confined to a V-shaped domain focussed on $p_{crit}$ at $T$=0. The generic phase behavior of the cuprates may be governed by quantum critical fluctuations above $p_{crit}$ and the pseudogap appears to be caused by short-range AF correlations.

Report this publication

Statistics

Seen <100 times