Affordable Access

Proteomic Analysis of Differentially Expressed Chlamydia pneumoniae Genes during Persistent Infection of HEp-2 Cells

American Society for Microbiology
Publication Date
  • Cellular Microbiology: Pathogen-Host Cell Molecular Interactions
  • Biology


Recent data have shown that the respiratory pathogen Chlamydia pneumoniae expresses an altered gene transcription profile during gamma interferon (IFN-γ)-induced persistent infection in vitro. In the present study, we examined, by proteomics, expression of C. pneumoniae proteins labeled intracellularly with [35S]methionine/cysteine under normal conditions or IFN-γ-mediated persistence. The identity of differentially expressed proteins during persistent infection was determined by matching spots to those of proteins identified in C. pneumoniae elementary bodies by matrix-assisted laser desorption ionization mass spectrometry. Upon treatment with 50 U of IFN-γ per ml, a marked upregulation of major outer membrane protein (MOMP), heat shock protein 60 (Hsp-60/GroEL), and proteins with functions in DNA replication (GyrA), transcription (RpoA, PnP), translation (Rrf), glycolysis (PgK, GlgP), and type III secretion (SctN) was observed at 24 h of infection. In contrast, no significant decreases in bacterial protein expression were found in C. pneumoniae-infected cells due to IFN-γ treatment. Upregulation of C. pneumoniae proteins involved in diverse functions during persistent infection may allow the organism to resist the inhibitory effects of IFN-γ while retaining basic functions. Future studies should examine the differential expression of chlamydial proteins during the developmental cycle under IFN-γ pressure to obtain a finer representation of the gene products involved in establishing persistence.

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times