Affordable Access

Protein kinase Calpha expression confers retinoic acid sensitivity on MDA-MB-231 human breast cancer cells.

Authors
  • Cho, Y
  • Talmage, D A
Type
Published Article
Journal
Experimental cell research
Publication Date
Sep 10, 2001
Volume
269
Issue
1
Pages
97–108
Identifiers
PMID: 11525643
Source
Medline
License
Unknown

Abstract

Retinoic acid activation of retinoic acid receptor alpha (RARalpha) induces protein kinase Calpha (PKCalpha) expression and inhibits proliferation of the hormone-dependent T-47D breast cancer cell line. Retinoic acid has no effect on proliferation or PKCalpha expression in a hormone-independent, breast cancer cell line (MDA-MB-231). To test the role of PKCalpha in retinoic acid-induced growth arrest of human breast cancer cells we established MDA-MB-231 cell lines stably expressing PKCalpha. Constitutive expression of PKCalpha did not affect proliferation of MDA-MB-231 cells but did result in partial retinoic acid sensitivity. Retinoic acid treatment of PKCalpha-MDA-MB-231 cells decreased proliferation (by approximately 40%) and inhibited serum activation of MAP kinases and induction of c-fos. Similar results were seen in MDA-MB-231 cells in which transcription of the transfected PKCalpha cDNA was reversibly induced by isopropyl beta-d-thiogalactoside. Expression of RARalpha in PKCalpha expressing MDA-MB-231 cells resulted in even greater retinoic acid responses, as measured by effects on cell proliferation, inhibition of serum signaling, and transactivation of an RARE-CAT reporter plasmid. In summary, PKCalpha synergizes with activated RARalpha to disrupt serum growth factor signaling, ultimately arresting proliferation of MDA-MB-231 cells.

Report this publication

Statistics

Seen <100 times