Affordable Access

deepdyve-link
Publisher Website

Protein binding kinetics quantification via coupled plasmonic-photonic resonance nanosensors in generic microplate reader.

Authors
  • Dang, Tang1
  • Hu, Wenjun1
  • Zhang, Wei1
  • Song, Zifang2
  • Wang, Yi3
  • Chen, Mingqian1
  • Xu, Hao3
  • Liu, Gang Logan4
  • 1 School of Life Science and Technology, Huazhong University of Science and Technology Wuhan, Hubei, 430074, China. , (China)
  • 2 Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. , (China)
  • 3 Liangzhun (Shanghai) Industrial Co. Ltd, Shanghai, China. , (China)
  • 4 School of Life Science and Technology, Huazhong University of Science and Technology Wuhan, Hubei, 430074, China. Electronic address: [email protected] , (China)
Type
Published Article
Journal
Biosensors & bioelectronics
Publication Date
Jul 05, 2019
Volume
142
Pages
111494–111494
Identifiers
DOI: 10.1016/j.bios.2019.111494
PMID: 31319329
Source
Medline
Keywords
Language
English
License
Unknown

Abstract

Almost no analytical assays, either colorimetric or fluorescence assays, for generic microplate readers is capable of dynamic measurements of protein-protein binding or the quantification of kinetic association and dissociation constants of protein interactions. On the other hand, protein binding kinetics quantification can be uniquely done on special expensive surface plasmon resonance (SPR) sensing equipment. Here we report the integration of coupled plasmonic-photonic resonance nanosensors in standard 96-well plate format and by using which, for the very first time, the demonstration of label-free dynamic SPR-like protein binding measurement and kinetics quantification in a generic microplate reader. Our low-cost label-free nanosensor plate enables very sensitive detection of immobilized protein interactions based on the transmission optical density (OD) value changes at specific wavelengths measured in a generic microplate reader. The relative end-point OD value changes show a good linear response with protein concentrations (from 0.05 to 50 μg/ml). And the protein quantification in serum results are consistent with the concurrent hospital lab tests. Most importantly, the kinetic association and dissociation constants of protein interactions in our sensor plate wells are determined by time-lapse dynamic OD value measurement in the generic microplate reader. Enabled by our unique nanosensor plate, SPR-like measurement of protein binding kinetics is now available using generic microplate reader ubiquitous in many chemistry and biomedical research labs. Copyright © 2019 Elsevier B.V. All rights reserved.

Report this publication

Statistics

Seen <100 times