Affordable Access

deepdyve-link
Publisher Website

Study on Characteristics of Electromagnetic Coil Used in MEMS Safety and Arming Device.

Authors
  • Sun, Yi1, 2
  • Lou, Wenzhong1, 2
  • Feng, Hengzhen1, 2
  • Zhao, Yuecen1, 2
  • 1 National Key Laboratory of Electro-Mechanics Engineering and Control, School of Mechatronical Engineering, Beijing Institute of technology, Beijing 100081, China. , (China)
  • 2 Beijing Institute of Technology, Chongqing Innovation Center, Chongqing 401120, China. , (China)
Type
Published Article
Journal
Micromachines
Publisher
MDPI AG
Publication Date
Jul 31, 2020
Volume
11
Issue
8
Identifiers
DOI: 10.3390/mi11080749
PMID: 32751964
Source
Medline
Keywords
Language
English
License
Unknown

Abstract

Traditional silicon-based micro-electro-mechanical system (MEMS) safety and arming devices, such as electro-thermal and electrostatically driven MEMS safety and arming devices, experience problems of high insecurity and require high voltage drive. For the current electromagnetic drive mode, the electromagnetic drive device is too large to be integrated. In order to address this problem, we present a new micro electromagnetically driven MEMS safety and arming device, in which the electromagnetic coil is small in size, with a large electromagnetic force. We firstly designed and calculated the geometric structure of the electromagnetic coil, and analyzed the model using COMSOL multiphysics field simulation software. The resulting error between the theoretical calculation and the simulation of the mechanical and electrical properties of the electromagnetic coil was less than 2% under the same size. We then carried out a parametric simulation of the electromagnetic coil, and combined it with the actual processing capacity to obtain the optimized structure of the electromagnetic coil. Finally, the electromagnetic coil was processed by deep silicon etching and the MEMS casting process. The actual electromagnetic force of the electromagnetic coil was measured on a micro-mechanical test system, compared with the simulation, and the comparison results were analyzed.

Report this publication

Statistics

Seen <100 times