Affordable Access

deepdyve-link
Publisher Website

Prolactin Signaling Stimulates Invasion via Na(+)/H(+) Exchanger NHE1 in T47D Human Breast Cancer Cells.

Authors
  • Pedraz-Cuesta, Elena1
  • Fredsted, Jacob1
  • Jensen, Helene H1
  • Bornebusch, Annika1
  • Nejsum, Lene N1
  • Kragelund, Birthe B1
  • Pedersen, Stine F1
  • 1 Section for Cell Biology and Physiology (E.P.-C., J.F., A.B., S.F.P.), Department of Biology, and Structural Biology and NMR laboratory (B.B.K.), Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Molecular Biology and Genetics (H.H.J.) and Department of Clinical Medicine and Interdisciplinary Nanoscience Center (H.H.J., L.N.N.), Aarhus University, DK-8000 Aarhus C, Denmark.
Type
Published Article
Journal
Molecular Endocrinology
Publisher
The Endocrine Society
Publication Date
July 2016
Volume
30
Issue
7
Pages
693–708
Identifiers
DOI: 10.1210/me.2015-1299
PMID: 27176613
Source
Medline
License
Unknown

Abstract

Prolactin (PRL) and its receptor (PRLR) are implicated in breast cancer invasiveness, although their exact roles remain controversial. The Na(+)/H(+) exchanger (NHE1) plays essential roles in cancer cell motility and invasiveness, but the PRLR and NHE1 have not previously been linked. Here we show that in T47D human breast cancer cells, which express high levels of PRLR and NHE1, exposure to PRL led to the activation of Janus kinase-2 (JAK2)/signal transducer and activator of transcription-5 (STAT5), Akt, and ERK1/2 signaling and the rapid formation of peripheral membrane ruffles, known to be associated with cell motility. NHE1 was present in small ruffles prior to PRL treatment and was further recruited to the larger, more dynamic ruffles induced by PRL exposure. In PRL-induced ruffles, NHE1 colocalized with activated Akt, ERK1/2, and the ERK effector p90Ribosomal S kinase (p90RSK), known regulators of NHE1 activity. Stimulation of T47D cells with PRL augmented p90RSK activation, Ser703-phosphorylation of NHE1, NHE1-dependent intracellular pH recovery, pericellular acidification, and NHE1-dependent invasiveness. NHE1 activity and localization to ruffles were attenuated by the inhibition of Akt and/or ERK1/2. In contrast, noncancerous MCF10A breast epithelial cells expressed NHE1 and PRLR at lower levels than T47D cells, and their stimulation with PRL induced neither NHE1 activation nor NHE1-dependent invasiveness. In conclusion, we show for the first time that PRLR activation stimulates breast cancer cell invasiveness via the activation of NHE1. We propose that PRL-induced NHE1 activation and the resulting NHE1-dependent invasiveness may contribute to the metastatic behavior of human breast cancer cells.

Report this publication

Statistics

Seen <100 times