Affordable Access

deepdyve-link
Publisher Website

Projected climate changes threaten ancient refugia of kelp forests in the North Atlantic.

Authors
  • Assis, Jorge1
  • Araújo, Miguel B2, 3, 4
  • Serrão, Ester A1
  • 1 Center of Marine Sciences, CCMAR-CIMAR, University of Algarve, Faro, Portugal. , (Portugal)
  • 2 National Museum of Natural Sciences, CSIC, Madrid, Spain. , (Spain)
  • 3 InBio/CIBIO, University of Évora, Largo dos Colegiais, Évora, Portugal. , (Portugal)
  • 4 Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark. , (Denmark)
Type
Published Article
Journal
Global Change Biology
Publisher
Wiley (Blackwell Publishing)
Publication Date
Jan 01, 2018
Volume
24
Issue
1
Identifiers
DOI: 10.1111/gcb.13818
PMID: 28710898
Source
Medline
Keywords
Language
English
License
Unknown

Abstract

Intraspecific genetic variability is critical for species adaptation and evolution and yet it is generally overlooked in projections of the biological consequences of climate change. We ask whether ongoing climate changes can cause the loss of important gene pools from North Atlantic relict kelp forests that persisted over glacial-interglacial cycles. We use ecological niche modelling to predict genetic diversity hotspots for eight species of large brown algae with different thermal tolerances (Arctic to warm temperate), estimated as regions of persistence throughout the Last Glacial Maximum (20,000 YBP), the warmer Mid-Holocene (6,000 YBP), and the present. Changes in the genetic diversity within ancient refugia were projected for the future (year 2100) under two contrasting climate change scenarios (RCP2.6 and RCP8.5). Models predicted distributions that matched empirical distributions in cross-validation, and identified distinct refugia at the low latitude ranges, which largely coincide among species with similar ecological niches. Transferred models into the future projected polewards expansions and substantial range losses in lower latitudes, where richer gene pools are expected (in Nova Scotia and Iberia for cold affinity species and Gibraltar, Alboran, and Morocco for warm-temperate species). These effects were projected for both scenarios but were intensified under the extreme RCP8.5 scenario, with the complete borealization (circum-Arctic colonization) of kelp forests, the redistribution of the biogeographical transitional zones of the North Atlantic, and the erosion of global gene pools across all species. As the geographic distribution of genetic variability is unknown for most marine species, our results represent a baseline for identification of locations potentially rich in unique phylogeographic lineages that are also climatic relics in threat of disappearing. © 2017 John Wiley & Sons Ltd.

Report this publication

Statistics

Seen <100 times