Affordable Access

Programmed cell death of keratinocytes culminates in apoptotic secretion of a humectant upon secretagogue action of acetylcholine.

Authors
Type
Published Article
Journal
Journal of Cell Science
0021-9533
Publisher
The Company of Biologists
Publication Date
Volume
114
Issue
Pt 6
Pages
1189–1204
Identifiers
PMID: 11228162
Source
Medline

Abstract

The programmed cell death of the stratified squamous epithelial cells comprising human epidermis culminates in abrupt transition of viable granular keratinocytes (KC) into dead corneocytes sloughed by the skin. The granular cell-corneocyte transition is associated with a loss in volume and dry cell weight but the mechanism for and biological significance of this form of keratinocyte apoptosis remain obscure. We show that terminally differentiated KC extrude into the intercellular spaces of living epidermis the cytoplasmic buds containing randomly congregated components of the cytosol as well as filaggrin, a precursor of the natural moisturizing factor. The discharge of secretory product is reminiscent of holocrine secretion, suggesting the term 'apoptotic secretion' for this novel, essential step in the process of cornification. The secretory product may become a part of the glycocalyx (a.k.a. 'intercellular cement substance' of epidermis) and serve as a humectant that counterbalances the osmotic pressure imposed by the natural moisturizing factor located in the stratum corneum comprised by corneocytes. The apoptotic secretion commences upon secretagouge action of acetylcholine which is synthesized and released by KC. A combination of a cholinergic nicotinic agonist and a muscarinic antagonist which increases intracellular calcium levels is required to trigger the apoptotic secretion. Analysis of the relative amounts of cholinergic enzymes and receptors expressed by KC capable of secretion and the pharmacological profiles of secretion regulation revealed an upward concentration gradient of free acetylcholine in epidermis which may provide for its unopposed secretagogue action via the m1 muscarinic and the alpha7, and alpha9 nicotinic receptor types expressed by KC at the latest stage of their development in the epidermis.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments
F