Affordable Access

Probing the orientational distribution of dyes in membranes through multiphoton microscopy.

Authors
  • Reeve, James E
  • Corbett, Alex D
  • Boczarow, Igor
  • Wilson, Tony
  • Bayley, Hagan
  • Anderson, Harry L
Type
Published Article
Journal
Biophysical Journal
Publisher
Elsevier
Publication Date
Sep 05, 2012
Volume
103
Issue
5
Pages
907–917
Identifiers
PMID: 23009840
Source
Medline
License
Unknown

Abstract

Numerous dyes are available or under development for probing the structural and functional properties of biological membranes. Exogenous chromophores adopt a range of orientations when bound to membranes, which have a drastic effect on their biophysical behavior. Here, we present a method that employs optical anisotropy data from three polarization-imaging techniques to establish the distribution of orientations adopted by molecules in monolayers and bilayers. The resulting probability density functions, which contain the preferred molecular tilt μ and distribution breadth γ, are more informative than an average tilt angle [φ]. We describe a methodology for the extraction of anisotropy data through an image-processing technology that decreases the error in polarization measurements by about a factor of four. We use this technique to compare di-4-ANEPPS and di-8-ANEPPS, both dipolar dyes, using data from polarized 1-photon, 2-photon fluorescence and second-harmonic generation imaging. We find that di-8-ANEPPS has a lower tilt but the same distributional width. We find the distribution of tilts taken by di-4-ANEPPS in two phospholipid membrane models: giant unilamellar vesicles and water-in-oil droplet monolayers. Both models result in similar distribution functions with average tilts of 52° and 47°, respectively.

Report this publication

Statistics

Seen <100 times