Affordable Access

Probability Update: Conditioning vs. Cross-Entropy

Authors
Type
Preprint
Publication Date
Submission Date
Identifiers
arXiv ID: 1302.1543
Source
arXiv
License
Yellow
External links

Abstract

Conditioning is the generally agreed-upon method for updating probability distributions when one learns that an event is certainly true. But it has been argued that we need other rules, in particular the rule of cross-entropy minimization, to handle updates that involve uncertain information. In this paper we re-examine such a case: van Fraassen's Judy Benjamin problem, which in essence asks how one might update given the value of a conditional probability. We argue that -- contrary to the suggestions in the literature -- it is possible to use simple conditionalization in this case, and thereby obtain answers that agree fully with intuition. This contrasts with proposals such as cross-entropy, which are easier to apply but can give unsatisfactory answers. Based on the lessons from this example, we speculate on some general philosophical issues concerning probability update.

Statistics

Seen <100 times