Affordable Access

Probabilistic Opacity for Markov Decision Processes

Authors
  • Bérard, Béatrice
  • Chatterjee, Krishnendu
  • Sznajder, Nathalie
Type
Preprint
Publication Date
Sep 01, 2014
Submission Date
Jul 16, 2014
Identifiers
arXiv ID: 1407.4225
Source
arXiv
License
Yellow
External links

Abstract

Opacity is a generic security property, that has been defined on (non probabilistic) transition systems and later on Markov chains with labels. For a secret predicate, given as a subset of runs, and a function describing the view of an external observer, the value of interest for opacity is a measure of the set of runs disclosing the secret. We extend this definition to the richer framework of Markov decision processes, where non deterministic choice is combined with probabilistic transitions, and we study related decidability problems with partial or complete observation hypotheses for the schedulers. We prove that all questions are decidable with complete observation and $\omega$-regular secrets. With partial observation, we prove that all quantitative questions are undecidable but the question whether a system is almost surely non opaque becomes decidable for a restricted class of $\omega$-regular secrets, as well as for all $\omega$-regular secrets under finite-memory schedulers.

Report this publication

Statistics

Seen <100 times