Affordable Access

Pressurised solvent extraction for organotin speciation in vegetable matrices.

  • Marcic, Christophe
  • Lespes, Gaëtane
  • Potin-Gautier, Martine
Published Article
Analytical and bioanalytical chemistry
Publication Date
Aug 01, 2005
PMID: 16007440


Because organotin compounds (OTC) are widely used in many fields of activity, they have become an ubiquitous environmental presence. The presence of organotins in the environment impacts upon food safety, making it important to monitor the levels of organotin pesticides in fruits and vegetables. Nevertheless, only a few studies have been published on organotin speciation in plants. The objective of the present study was to evaluate and optimise a specific procedure based on pressurised solvent extraction (PSE) that is suitable for monitoring organotin content in vegetables. In ASE, solvents are used at elevated temperatures and pressures to increase the rate and efficiency of the extraction process. The results from this procedure were compared to those from the technique usually employed, solid/liquid extraction (SLE) performed in an acidic solvent by mechanical shaking. Three extracting solutions were tested-methanol, ethyl acetate and a mixture of methanol and ethyl acetate-and the mixture was found to give the most quantitative results while preserving the speciation. French bean and lettuce leaves as well as potato tubers were used as the plant materials. These vegetables were considered because they are the vegetables consumed in the most quantities in Europe. The study focuses on trisubstituted OTCs, which are the most toxic tin species. The samples were spiked with four trisubstituted organotins: tributyltin (TBT), triphenyltin (TPhT), tricyclohexyltin (TcHexT) and trioctyltin (TOcT). The influence of the pressure and the temperature of the PSE on the quantitativity of the process and on species preservation was evaluated using the experimental design methodology. The optimised PSE allowed detection limits down to 1-2 ng (Sn) g(-1) to be reached. These are higher than those obtained by SLE (0.1-1 ng (Sn) g(-1)). Although the repeatability is similar for both PSE and SLE (2-12% for triorganotin compounds), this appears to be highly time-dependent in the case of SLE. Comparison with SLE confirms that PSE is an interesting tool for vegetable analysis considering the satisfactory OTC preservation and repeatability obtained for a relatively short extraction duration (only 15 min against 2-12 h for SLE).

Report this publication


Seen <100 times