Affordable Access

Preparation of biocatalytic nanofibres with high activity and stability via enzyme aggregate coating on polymer nanofibres / Preparation of biocatalytic nanofibres with high activity and stability via enzyme aggregate coating on polymer nanofibres

Authors
  • Kim, Byoung Chan
  • Nair, Sujith
  • Kim, Jungbae
  • Kwak, Jahun
  • Grate, Jay W.
  • Kim, Seong H
  • Gu, Man Bock
Publication Date
Jul 01, 2005
Source
[email protected]
Keywords
Language
English
License
Unknown
External links

Abstract

We have developed a unique approach for the fabrication of enzyme aggregate coatings on the surfaces of electrospun polymer nanofibres. This approach employs covalent attachment of seed enzymes onto nanofibres consisting of a mixture of polystyrene and poly(styrene-co-maleic anhydride), followed by a glutaraldehyde (GA) treatment that cross-links additional enzyme molecules and aggregates from the solution onto the covalently attached seed enzyme molecules. These cross-linked enzyme aggregates, covalently attached to the nanofibres via the linkers of seed enzyme molecules, are expected to improve the enzyme activity due to increased enzyme loading, and also the enzyme stability. To demonstrate the principle, we coated a-chymotrypsin (CT) on nanofibres electrospun from a mixture of polystyrene and poly(styrene-co-maleic anhydride). The initial activity of CT-aggregate-coated nanofibres was nine times higher than nanofibres with just a layer of covalently attached CT molecules. The enzyme stability of CT-aggregate-coated nanofibres was greatly improved with essentially no measurable loss of activity over a month of observation under rigorous shaking conditions. This new approach of enzyme coating on nanofibres, yielding high activity and stability, creates a useful new biocatalytic immobilized enzyme system with potential applications in bioconversion, bioremediation, and biosensors / close / 91 / 118

Report this publication

Statistics

Seen <100 times