Preferential formation of (5S,6R)-thymine glycol for oligodeoxyribonucleotide synthesis and analysis of drug binding to thymine glycol-containing DNA

Affordable Access

Preferential formation of (5S,6R)-thymine glycol for oligodeoxyribonucleotide synthesis and analysis of drug binding to thymine glycol-containing DNA

Publisher
Oxford University Press
Publication Date
Jan 01, 2006
Source
PMC
Keywords
Disciplines
  • Chemistry
License
Unknown

Abstract

We previously reported the chemical synthesis of oligonucleotides containing thymine glycol, a major form of oxidative DNA damage. In the preparation of the phosphoramidite building block, the predominant product of the osmium tetroxide oxidation of protected thymidine was (5R,6S)-thymidine glycol. To obtain the building block of the other isomer, (5S,6R)-thymidine glycol, in an amount sufficient for oligonucleotide synthesis, the Sharpless asymmetric dihydroxylation (AD) reaction was examined. Although the reaction was very slow, (5S,6R)-thymidine glycol was obtained in preference to the (5R,6S) isomer. The ratio of (5S,6R)- and (5R,6S)-thymidine glycols was 2:1, and a trans isomer was also formed. When an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate, was used as a co-solvent, the reaction became faster, and the yield was improved without changing the preference. The phosphoramidite building block of (5S,6R)-thymidine glycol was prepared, and oligonucleotides containing 5S-thymine glycol were synthesized. One of the oligonucleotides was used to analyze the binding of distamycin A to thymine glycol-containing DNA by Circular dichroism (CD) spectroscopy and surface plasmon resonance (SPR) measurements. Distamycin A bound to a duplex containing either isomer of thymine glycol within the AATT target site, and its binding was observed even when the thymine glycol was placed opposite cytosine.

Report this publication

Statistics

Seen <100 times