Affordable Access

Precipitation of hydroxyapatite nanoparticles: effects of precipitation method on electrophoretic deposition.

Authors
Type
Published Article
Journal
Journal of materials science. Materials in medicine
Publication Date
Volume
16
Issue
4
Pages
319–324
Identifiers
PMID: 15803276
Source
Medline
License
Unknown

Abstract

Electrophoretic deposition is a low-cost, simple, and flexible coating method for producing hydroxyapatite (HA) coatings on metal implants with a broad range of thicknesses, from < 1 microm to > 500 microm. As for many other HA coating techniques, densification of electrophoretically deposited coatings involves heating the coated metal to temperatures above 1000 degrees C. Metal substrates tend to react with HA coatings at such temperatures inducing decomposition at temperatures below 1050 degrees C (decomposition for pure HA normally occurs above 1300 degrees C). Therefore, densification of these coatings needs to be conducted at temperatures lower than 1050 degrees C, and this necessitates the use of high-surface-area HA nano-precipitates, rather than commercially available pre-calcined powders, which densify at temperatures typically higher than 1200 degrees C. HA nano-precipitates were prepared by three methods and deposited on metal substrates by electrophoresis: (1) the acid base method, which produced plate-like nano-particles with a 2.5:1 aspect ratio, and severely cracked coatings; (2) the calcium acetate method, which produced needle-like nano-particles with a 10:1 aspect ratio, and slightly cracked coatings; (3) the metathesis method, which produced rounded nano-particles with a 2:1 aspect ratio, and high-quality crack-free coatings. The results suggested that the less equiaxed the nano-particles, the more cracked the coatings obtained by the electrophoretic deposition technique.

Statistics

Seen <100 times