POWER-TYPE QUASIMINIMIZERS
- Authors
- Publication Date
- Jan 01, 2011
- Identifiers
- DOI: 10.5186/aasfm.2011.3619
- OAI: oai:DiVA.org:liu-66898
- Source
- DiVA - Academic Archive On-line
- Keywords
- Language
- English
- License
- Green
- External links
Abstract
In this paper we examine the quasiminimizing properties of radial power-type functions u(x) = vertical bar x vertical bar(alpha) in R-n. We find the optimal quasiminimizing constant whenever u is a quasiminfinizer of the p-Dirichlet integral, p not equal n, and similar results when u is a quasisub- and quasisuperminimizer. We also obtain similar results for log-powers when p = n.