Affordable Access

Possible involvement of beta-lactamase in sporulation in Bacillus cereus.

Authors
Type
Published Article
Journal
Journal of Bacteriology
0021-9193
Publisher
American Society for Microbiology
Publication Date
Volume
102
Issue
1
Pages
64–71
Identifiers
PMID: 4985546
Source
Medline

Abstract

Nonreverting beta-lactamase-negative strains were isolated from the beta-lactamase-constitutive strain, Bacillus cereus 569 H. These strains differed from both beta-lactamase-inducible and -constitutive strains not only in failure to produce beta-lactamase but also in failure to autolyze on aging, delayed sporulation, and failure to release free spores from sporangia when produced. The addition of B. cereus beta-lactamase of 15% purity to a final concentration of 10 IU/ml stimulates sporulation and particularly the release of free spores in culture from sporangia of strain 569 (inducible wild-type), 569/H (constitutive mutant of 569), and HPen(-), a nonreverting beta-lactamase strain isolated from 569/H in this laboratory. Cultures of HPen(-) did not release free spores without this treatment. Similar stimulation of sporulation and spore release by beta-lactamase from B. cereus were observed in another beta-lactamase-negative strain derived from 569/H as well as in certain sporogeny mutants of B. subtilis. The beta-lactamase preparation used in these experiments was free of peptidases, proteases, and autolysins capable of solubilizing wall from vegetative cells. These results, taken with our previous finding that a soluble peptidoglycan inducer becomes available in cultures of B. cereus only at sporulation and that normal derepression of beta-lactamase accompanies normal sporulation, suggest that beta-lactamase in B. cereus may be involved in peptidoglycan metabolism during sporulation and possibly the breakdown of sporangial wall with the concomitant release of mature spores.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments