Affordable Access

deepdyve-link
Publisher Website

Plasmonic Photoelectrochemistry: In View of Hot Carriers.

Authors
  • Zhang, Yuchao1
  • Guo, Wenxiao1
  • Zhang, Yunlu1
  • Wei, Wei David1
  • 1 Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, FL, 32611, USA.
Type
Published Article
Journal
Advanced Materials
Publisher
Wiley (John Wiley & Sons)
Publication Date
Nov 01, 2021
Volume
33
Issue
46
Identifiers
DOI: 10.1002/adma.202006654
PMID: 33977588
Source
Medline
Keywords
Language
English
License
Unknown

Abstract

Utilizing plasmon-generated hot carriers to drive chemical reactions has emerged as a popular topic in solar photocatalysis. However, a complete description of the underlying mechanism of hot-carrier transfer in photochemical processes remains elusive, particularly for those involving hot holes. Photoelectrochemistry enables to localize hot holes on photoanodes and hot electrons on photocathodes and thus offers an approach to separately explore the hole-transfer dynamics and electron-transfer dynamics. This review summarizes a comprehensive understanding of both hot-hole and hot-electron transfers from photoelectrochemical studies on plasmonic electrodes. Additionally, working principles and applications of spectroelectrochemistry are discussed for plasmonic materials. It is concluded that photoelectrochemistry provides a powerful toolbox to gain mechanistic insights into plasmonic photocatalysis. © 2021 Wiley-VCH GmbH.

Report this publication

Statistics

Seen <100 times