Affordable Access

deepdyve-link
Publisher Website

Planetesimal driven migration as an explanation for observations of high levels of warm, exozodiacal dust

Authors
  • Bonsor, Amy
  • Raymond, Sean N.
  • Augereau, Jean-Charles
  • Ormel, Chris W.
Type
Preprint
Publication Date
Apr 09, 2014
Submission Date
Apr 09, 2014
Identifiers
DOI: 10.1093/mnras/stu721
Source
arXiv
License
Yellow
External links

Abstract

High levels of exozodiacal dust have been observed in the inner regions of a large fraction of main sequence stars. Given the short lifetime of the observed small dust grains, these 'exozodis' are difficult to explain, especially for old (>100 Myr) stars. The exozodiacal dust may be observed as excess emission in the mid-infrared, or using interferometry. We hypothesise that exozodi are sustained by planetesimals scattered by planets inwards from an outer planetesimal belt, where collision timescales are long. In this work, we use N-body simulations to show that the outwards migration of a planet into a belt, driven by the scattering of planetesimals, can increase, or sustain, the rate at which planetesimals are scattered from the outer belt to the exozodi region. We hypothesise that this increase is sufficient to sustain the observed exozodi on Gyr timescales. No correlation between observations of an outer belt and an exozodi is required for this scenario to work, as the outer belt may be too faint to detect. If planetesimal driven migration does explain the observed exozodi, this work suggests that the presence of an exozodi indicates the presence of outer planets and a planetesimal belt.

Report this publication

Statistics

Seen <100 times