Affordable Access

deepdyve-link
Publisher Website

The Planck Scale from Top Condensation

Authors
Type
Published Article
Publication Date
Submission Date
Identifiers
DOI: 10.1103/PhysRevD.81.065004
Source
arXiv
License
Yellow
External links

Abstract

We propose a scenario in which the Planck scale is dynamically linked to the electroweak scale induced by top condensation. The standard model field content, without the Higgs, is promoted to a 5D warped background. There is also an additional 5D fermion with the quantum numbers of the right-handed top. Localization of the zero-modes leads, at low energies, to a Nambu-Jona-Lasinio model that also stabilizes the radion field dynamically thus explaining the hierarchy between the Planck scale and v_EW = 174 GeV. The top mass arises dynamically from the electroweak breaking condensate. The other standard model fermion masses arise naturally from higher-dimension operators, and the fermion mass hierarchies and flavor structure can be explained from the localization of the zero-modes in the extra dimension. If any other contributions to the radion potential except those directly related with electroweak symmetry breaking are engineered to be suppressed, the KK scale is predicted to be about two orders of magnitude above the electroweak scale rendering the model easily consistent with electroweak precision data. The model predicts a heavy (composite) Higgs with a mass of about 500 GeV and standard-model-like properties, and a vector-like quark with non-negligible mixing with the top quark and mass in the 1.6 - 2.9 TeV range. Both can be within the reach of the LHC. It also predicts a radion with a mass of a few GeV that is very weakly coupled to standard model matter.

Statistics

Seen <100 times