Affordable Access

deepdyve-link deepdyve-link
Publisher Website

Photophysical characters of rationally designed hetero-ring-expanded guanine analogues and effect of cytosine pairing.

Authors
Type
Published Article
Journal
The Journal of Physical Chemistry B
1520-5207
Publisher
American Chemical Society
Publication Date
Volume
112
Issue
34
Pages
10723–10731
Identifiers
DOI: 10.1021/jp802556a
PMID: 18671357
Source
Medline
License
Unknown

Abstract

We present the results of the CIS and TDB3LYP calculations of the optical absorption and emission spectra of some newly designed guanine (G) analogues and their Watson-Crick base pairs. Compared with natural G, the onset absorption peaks of these newly designed analogues are red-shifted, while the fluorescence peaks are blue-shifted. In general, the first excited singlet states (pipi*) of these analogues are nonplanar for all bases considered here. But, the Stokes shifts for the designed G-analogues are much smaller than that of natural G, suggesting that they have stronger molecular rigidity and higher fluorescence quantum yields than those of natural G. The first excited states of these Watson-Crick base pairs essentially originate from those of their isolated purine moieties, as demonstrated from the S1 geometries of their Watson-Crick base pairs. For G and its analogues, A1 and A2 (they are ring-expanded with one-bond intercalation at the C5 site), the pairing with cytosine reduces the oscillator strengths of both the first absorption peak (by 27%-60%) and the fluorescent emission (by 19%-23%), while for the analogues A3, A4, and xG in which G is ring-expanded with a two-bond intercalation at the C5 site, the pairing, in contrast, increases the oscillator strengths of both the first absorption peak (by 11%-15%) and the fluorescent emission (by 3%-20%). These observations indicate that the pairing with cytosine can quench the fluorescence for G, A1, and A2 but enhance the fluorescence quantum yields for A3, A4, and xG. The significant shifts induced by ring-expansion in the ring-expanded G with a two-bond intercalation at the C5 site reveal a possibility for their fluorescent detections.

Statistics

Seen <100 times