Affordable Access

Access to the full text

Photo-electrochemical hydrogen production from neutral phosphate buffer and seawater using micro-structured p-Si photo-electrodes functionalized by solution-based methods

Authors
  • Kawde, Anurag
  • Annamalai, Alagappan
  • Amidani, Lucia
  • Boniolo, Manuel
  • Kwong, Wai Ling
  • Sellstedt, Anita
  • Glatzel, Pieter
  • Wågberg, Thomas
  • Messinger, Johannes
Publication Date
Jan 01, 2018
Identifiers
DOI: 10.1039/c8se00291f
OAI: oai:DiVA.org:umu-153381
Source
DiVA - Academic Archive On-line
Keywords
Language
English
License
Green
External links

Abstract

Solar fuels such as H2 generated from sunlight and seawater using earth-abundant materials are expected to be a crucial component of a next generation renewable energy mix. We herein report a systematic analysis of the photo-electrochemical performance of TiO2 coated, microstructured p-Si photoelectrodes (p-Si/TiO2) that were functionalized with CoOx and NiOx for H2 generation. These photocathodes were synthesized from commercial p-Si wafers employing wet chemical methods. In neutral phosphate buffer and standard 1 sun illumination, the p-Si/TiO2/NiOx photoelectrode showed a photocurrent density of 1.48 mA cm2 at zero bias (0 VRHE), which was three times and 15 times better than the photocurrent densities of p-Si/TiO2/CoOx and p-Si/TiO2, respectively. No decline in activity was observed over a five hour test period, yielding a Faradaic efficiency of 96% for H2 production. Based on the electrochemical characterizations and the high energy resolution fluorescence detected X-ray absorption near edge structure (HERFD-XANES) and emission spectroscopy measurements performed at the Ti Ka1 fluorescence line, the superior performance of the p-Si/TiO2/ NiOx photoelectrode was attributed to improved charge transfer properties induced by the NiOx coating on the protective TiO2 layer, in combination with a higher catalytic activity of NiOx for H2-evolution. Moreover, we report here an excellent photo-electrochemical performance of p-Si/TiO2/NiOx photoelectrode in corrosive artificial seawater (pH 8.4) with an unprecedented photocurrent density of 10 mA cm2 at an applied potential of 0.7 VRHE, and of 20 mA cm2 at 0.9 VRHE. The applied bias photon-to-current conversion efficiency (ABPE) at 0.7 VRHE and 10 mA cm2 was found to be 5.1%

Report this publication

Statistics

Seen <100 times