Affordable Access

Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity.

Authors
Type
Published Article
Journal
Journal of Biological Chemistry
Publisher
American Society for Biochemistry and Molecular Biology
Volume
282
Issue
15
Source
Hunter Lab
License
Unknown

Abstract

Increased transcriptional activity of beta-catenin resulting from Wnt/Wingless-dependent or -independent signaling has been detected in many types of human cancer, but the underlying mechanism of Wnt-independent regulation is poorly understood. We have demonstrated that AKT, which is activated downstream from epidermal growth factor receptor signaling, phosphorylates beta-catenin at Ser552 in vitro and in vivo. AKT-mediated phosphorylation of beta-catenin causes its disassociation from cell-cell contacts and accumulation in both the cytosol and the nucleus and enhances its interaction with 14-3-3zeta via a binding motif containing Ser552. Phosphorylation of beta-catenin by AKT increases its transcriptional activity and promotes tumor cell invasion, indicating that AKT-dependent regulation of beta-catenin plays a critical role in tumor invasion and development.

Report this publication

Statistics

Seen <100 times