Affordable Access

Phosphate-starvation-induced outer membrane proteins of members of the families Enterobacteriaceae and Pseudomonodaceae: demonstration of immunological cross-reactivity with an antiserum specific for porin protein P of Pseudomonas aeruginosa.

Authors
Publication Date
Source
PMC
Keywords
Disciplines
  • Biology
License
Unknown

Abstract

Bacteria from members of the families Enterobacteriaceae and Pseudomonadaceae were grown under phosphate-deficient (0.1 to 0.2 mM Pi) conditions and examined for the production of novel membrane proteins. Of the 17 strains examined, 12 expressed a phosphate-starvation-induced outer membrane protein which was heat modifiable in that after solubilization in sodium dodecyl sulfate at low temperature the protein ran on gels as a diffuse band of higher apparent molecular weight, presumably an oligomer form, which shifted to an apparent monomer form after solubilization at high temperature. These proteins fell into two classes based on their monomer molecular weights and the detergent conditions required to release the proteins from the peptidoglycan. The first class, expressed by species of the Pseudomonas fluorescens branch of the family Pseudomonadaceae, was similar to the phosphate-starvation-inducible, channel-forming protein P of Pseudomonas aeruginosa. The second class resembled the major enterobacterial porin proteins and the phosphate-regulated PhoE protein of Escherichia coli. Using a protein P-trimer-specific polyclonal antiserum, we were able to demonstrate cross-reactivity of the oligomeric forms of both classes of these proteins on Western blots. However, this antiserum did not react with the monomeric forms of any of these proteins, including protein P monomers. With a protein P-monomer-specific antiserum, no reactivity was seen with any of the phosphate-starvation-inducible membrane proteins (in either oligomeric or monomeric form), with the exception of protein P monomers. These results suggest the presence of conserved antigenic determinants only in the native, functional proteins.

Statistics

Seen <100 times