Affordable Access

The $:\phi^4_4:$ quantum field theory, II. Integrability of Wick kernels

Authors
  • Osipov, Edward P.
Type
Preprint
Publication Date
Aug 17, 1996
Submission Date
Aug 17, 1996
Identifiers
arXiv ID: hep-th/9608115
Source
arXiv
License
Unknown
External links

Abstract

We continue the construction of the $:\phi^4_4:$ quantum field theory. In this paper we consider the Wick kernel of the interacting quantum field. Using the complex structure and the Fock-Bargmann-Berezin-Segal integral representation we prove that this kernel defines a unique operator--valued generalized function on the space $\Sc^\alpha(\R^4)$ for any $\alpha<6/5,$ i.e. the constructed quantum field is the generalized operator-valued function of localizable Jaffe class. The same assertion is valid for the outgoing quantum field. These assertions about the quantum field allow to construct the Wightman functions, the matrix elements of the quantum scattering operator and to consider their properties (positivity, spectrality, Poincare invariance, locality, asymptotic completeness, and unitarity of the quantum scattering).

Report this publication

Statistics

Seen <100 times