Affordable Access

Publisher Website

Phenotypic similarity-based approach for variant prioritization for unsolved rare disease: a preliminary methodological report.

  • Lagorce, David1
  • Lebreton, Emeline2
  • Matalonga, Leslie3
  • Hongnat, Oscar2
  • Chahdil, Maroua2
  • Piscia, Davide3
  • Paramonov, Ida3
  • Ellwanger, Kornelia4, 5
  • Köhler, Sebastian6
  • Robinson, Peter7
  • Graessner, Holm4, 5
  • Beltran, Sergi3
  • Lucano, Caterina2
  • Hanauer, Marc2
  • Rath, Ana2
  • 1 INSERM, US14 - Orphanet, Plateforme Maladies Rares, 75014, Paris, France. [email protected]. , (France)
  • 2 INSERM, US14 - Orphanet, Plateforme Maladies Rares, 75014, Paris, France. , (France)
  • 3 CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona, 08028, Spain. , (Spain)
  • 4 Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany. , (Germany)
  • 5 Centre for Rare Diseases, University of Tübingen, Tübingen, Germany. , (Germany)
  • 6 Ada Health GmbH, Berlin, Germany. , (Germany)
  • 7 The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.
Published Article
European Journal of Human Genetics
Springer Nature
Publication Date
Feb 01, 2024
DOI: 10.1038/s41431-023-01486-7
PMID: 37926714


Rare diseases (RD) have a prevalence of not more than 1/2000 persons in the European population, and are characterised by the difficulty experienced in obtaining a correct and timely diagnosis. According to Orphanet, 72.5% of RD have a genetic origin although 35% of them do not yet have an identified causative gene. A significant proportion of patients suspected to have a genetic RD receive an inconclusive exome/genome sequencing. Working towards the International Rare Diseases Research Consortium (IRDiRC)'s goal for 2027 to ensure that all people living with a RD receive a diagnosis within one year of coming to medical attention, the Solve-RD project aims to identify the molecular causes underlying undiagnosed RD. As part of this strategy, we developed a phenotypic similarity-based variant prioritization methodology comparing submitted cases with other submitted cases and with known RD in Orphanet. Three complementary approaches based on phenotypic similarity calculations using the Human Phenotype Ontology (HPO), the Orphanet Rare Diseases Ontology (ORDO) and the HPO-ORDO Ontological Module (HOOM) were developed; genomic data reanalysis was performed by the RD-Connect Genome-Phenome Analysis Platform (GPAP). The methodology was tested in 4 exemplary cases discussed with experts from European Reference Networks. Variants of interest (pathogenic or likely pathogenic) were detected in 8.8% of the 725 cases clustered by similarity calculations. Diagnostic hypotheses were validated in 42.1% of them and needed further exploration in another 10.9%. Based on the promising results, we are devising an automated standardized phenotypic-based re-analysis pipeline to be applied to the entire unsolved cases cohort. © 2023. The Author(s).

Report this publication


Seen <100 times