Affordable Access

Pathophysiology and classification of iron overload diseases; update 2018

Authors
  • Brissot, Pierre
  • Troadec, Marie-Bérengère
  • Loréal, Olivier
  • Brissot, Eolia
Publication Date
Jan 01, 2018
Source
HAL-UPMC
Keywords
Language
English
License
Unknown
External links

Abstract

Iron overload pathophysiology has benefited from significant advances in the knowledge of iron metabolism and in molecular genetics. As a consequence, iron overload nosology has been revisited. The hematologist may be confronted to a number of iron overload syndromes, from genetic or acquired origin. Hemochromatoses, mostly but not exclusively related to the HFE gene, correspond to systemic iron overload of genetic origin in which iron excess is the consequence of hepcidin deficiency, hepcidin being the hormone regulating negatively plasma iron. Iron excess develops following hypersideremia and the formation of non-transferrin-bound iron, which targets preferentially parenchymal cells (hepatocytes). The ferroportin disease has a totally different iron overload mechanism consisting of defective egress of cellular iron into the plasma, iron deposition taking place mostly within the macrophages (spleen). Hereditary aceruloplasminemia is peculiar since systemic iron overload involves the brain. Two main types of acquired iron overload can be seen by the hematologist, one related to dyserythropoiesis (involving hypohepcidinemia ), the other related to multiple transfusions (thalassemias, myelodysplasia, hematopoietic stem cell transplantation). Congenital sideroblastic anemias, either monosyndromic (anemia) or polysyndromic (anemia plus extra-hematological syndromes), develop both compartimental iron excess within the erythroblast mitochondria, and systemic iron overload (through dyserythropoiesis and/or transfusions).

Report this publication

Statistics

Seen <100 times