Affordable Access

Particle-attached microorganism oxidation of ammonia in a hypereutrophic urban river.

  • Cai, Xianlei
  • Yao, Ling
  • Hu, Yuanyuan
  • Jiang, Hui
  • Shen, Mingdi
  • Hu, Quanman
  • Wang, Zixia
  • Dahlgren, Randy A
Publication Date
May 01, 2019
eScholarship - University of California
External links


To elucidate the importance and mechanisms of particle-attached microorganisms on ammonia oxidation, we conducted a controlled simulation experiment with samples collected from the Shunao River, an ammonia-rich hypereutrophic urban river in eastern China. The effects of particle concentration, ammonia concentration, organic carbon source and concentration, dissolved oxygen concentration, and pH were investigated on ammonia transformation rate (ammonia removal rate and NO2 - + NO3 - accumulation rate) and abundance of particle-attached ammonia-oxidizing bacteria (AOB) and archaea (AOA). All these factors significantly influenced ammonia transformation rates. Our results provided direct evidence that microorganisms attached on riverine suspended particles were associated with ammonia oxidation. Sequencing revealed that the AOA genus Nitrososphaera, and the AOB genus Nitrosomonas were the most dominant in particle-attached ammonia-oxidizing microbial communities. Further analysis showed that AOB communities had higher species richness and diversity compared with AOA communities. Additionally, AOB amoA genes were ~10-100 times more abundant than AOA amoA genes, and AOB abundance was more strongly correlated with ammonia transformation rates than AOA abundance in most experiments, indicating that particle-attached AOB were more important than AOA in the hypereutrophic urban river. This study adds to our knowledge of particle-attached microorganism oxidation of ammonia.

Report this publication


Seen <100 times