Affordable Access

Oxygen-dependent regulation of key components in microbial chlorate respiration

Authors
  • Hellberg Lindqvist, Miriam
Publication Date
Jan 01, 2016
Source
DiVA - Academic Archive On-line
Keywords
Language
English
License
Green
External links

Abstract

Contamination of perchlorate and chlorate in nature is primarily the result of various industrial processes. The microbial respiration of these oxyanions of chlorine plays a major role in reducing the society’s impact on the environment. The focus with this thesis is to investigate the oxygen-dependent regulation of key components involved in the chlorate respiration in the gram‑negative bacterium Ideonella dechloratans. Chlorate metabolism is based on the action of the enzymes chlorate reductase and chlorite dismutase and results in the end products molecular oxygen and chloride ion. Up‑regulation of chlorite dismutase activity in the absence of oxygen is demonstrated to occur at the transcriptional level, with the participation of the transcriptional fumarate and nitrate reduction regulator (FNR). Also, the chlorate reductase enzyme was shown to be regulated at the transcriptional level with the possible involvement of additional regulating mechanisms as well. Interestingly, the corresponding chlorate reductase operon was found to be part of a polycistronic mRNA which also comprises the gene for a cytochrome c and a putative transcriptional regulator protein.

Report this publication

Statistics

Seen <100 times