Affordable Access

Access to the full text

Oxidation behaviour of lattice oxygen in Li-rich manganese-based layered oxide studied by hard X-ray photoelectron spectroscopy

  • Shimoda, Keiji1
  • Taketoshi Minato1
  • Nakanishi, Koji1
  • Komatsu, Hideyuki1
  • Matsunaga, Toshiyuki1
  • Tanida, Hajime1
  • Arai, Hajime1
  • Ukyo, Yoshio1
  • Uchimoto, Yoshiharu2
  • Ogumi, Zempachi1
Published Article
Journal of Materials Chemistry A
Royal Society of Chemistry (RSC)
Publication Date
Jan 25, 2016
DOI: 10.1039/c6ta01152g


The oxidation/reduction behaviours of lattice oxygen and transition metals in a Li-rich manganese-based layered oxide Li[Li0.25Ni0.20Mn0.55]O1.93 are investigated by using hard X-ray photoelectron spectroscopy (HAX-PES). By making use of its deeper probing depth rather than in-house XPS analyses, we clearly confirm the formation of O− ions as bulk oxygen species in the active material. They are formed on the 1st charging process as a charge compensation mechanism for delithiation and decrease on discharging. In particular, the cation–anion dual charge compensation involving Ni and O ions is suggested during the voltage slope region of the charging process. The Ni ions in the material are considered to increase the capacity delivered by a reversible anion redox reaction with the suppression of O2 gas release. On the other hand, we found structural deterioration in the cycled material. The O− species are still observed but are electrochemically inactive during the 5th charge–discharge cycle. Also, the oxidation state of Ni ions is divalent and inactive, although that of Mn ions changes reversibly. We believe that this is associated with the structural rearrangement occurring after the activation process during the 1st charging, leading to the formation of spinel- or rocksalt-like domains over the sub-surface region of the particles.

Report this publication


Seen <100 times