Affordable Access

Overexpression of the cystic fibrosis transmembrane conductance regulator in NIH 3T3 cells lowers membrane potential and intracellular pH and confers a multidrug resistance phenotype.

Authors
  • L Y Wei
  • M J Stutts
  • M M Hoffman
  • P D Roepe
Publication Date
Sep 01, 1995
Source
PMC
Keywords
Disciplines
  • Biology
  • Medicine
License
Unknown

Abstract

Because of the similarities between the cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance (MDR) proteins, recent observations of decreased plasma membrane electrical potential (delta psi) in cells overexpressing either MDR protein or the CFTR, and the effects of delta psi on passive diffusion of chemotherapeutic drugs, we have analyzed chemotherapeutic drug resistance for NIH 3T3 cells overexpressing different levels of functional CFTR. Three separate clones not previously exposed to chemotherapeutic drugs exhibit resistance to doxorubicin, vincristine, and colchicine that is similar to MDR transfectants not previously exposed to chemotherapeutic drugs. Two other clones expressing lower levels of CFTR are less resistant. As shown previously these clones exhibit decreased plasma membrane delta psi similar to MDR transfectants, but four of five exhibit mildly acidified intracellular pH in contrast to MDR transfectants, which are in general alkaline. Thus the MDR protein and CFTR-mediated MDR phenotypes are distinctly different. Selection of two separate CFTR clones on either doxorubicin or vincristine substantially increases the observed MDR and leads to increased CFTR (but not measurable MDR or MRP) mRNA expression. CFTR overexpressors also exhibit a decreased rate of 3H -vinblastine uptake. These data reveal a new and previously unrecognized consequence of CFTR expression, and are consistent with the hypothesis that membrane depolarization is an important determinant of tumor cell MDR.

Report this publication

Statistics

Seen <100 times