Affordable Access

Osteoblast function on synthetic biodegradable polymers.

Authors
  • Ishaug, S L
  • Yaszemski, M J
  • Bizios, R
  • Mikos, A G
Type
Published Article
Journal
Journal of biomedical materials research
Publication Date
Dec 01, 1994
Volume
28
Issue
12
Pages
1445–1453
Identifiers
PMID: 7876284
Source
Medline
Keywords
License
Unknown

Abstract

Rat osteoblasts were cultured on films of biodegradable poly(L-lactic acid) (PLLA), 75:25 poly(DL-lactic-co-glycolic acid) (PLGA), 50:50 PLGA, and poly(glycolic acid) (PGA) for up to 14 days. Osteoblasts attached equally well to all the polymer substrates after 8 h in culture. By day 4 in culture, osteoblasts had exceeded confluency numbers, and their proliferation leveled off by day 7. An increase in alkaline phosphatase (ALP) activity from 1.92 (+/- 0.47) x 10(-7) for day 7 to 5.75 (+/- 0.12) x 10(-7) mumol/cell per min for day 14 was reported for osteoblasts cultured on 75:25 PLGA, which was comparable to that observed for tissue culture polystyrene (TCPS) controls. The ALP activities expressed by osteoblasts cultured on PLLA, 50:50 PLGA, and PGA films did not significantly increase over time. Collagen synthesis for osteoblasts cultured on all polymer substrates was similar to that of TCPS and did not vary with time. The morphology of cultured osteoblasts was not affected by the continuous degradation of the polymer substrates. These results demonstrate that poly(alpha-hydroxy esters) can provide a suitable substrate for osteoblast culture and hold promise in bone regeneration by osteoblast transplantation.

Report this publication

Statistics

Seen <100 times