Affordable Access

Osmotic stress-mediated activation of RET kinases involves intracellular disulfide-bonded dimer formation.

Authors
Type
Published Article
Journal
Antioxidants & Redox Signaling
1523-0864
Publisher
Mary Ann Liebert
Publication Date
Volume
3
Issue
3
Pages
473–482
Identifiers
PMID: 11491658
Source
Medline

Abstract

We showed that osmotic stress induces activation of c-RET and second-set activation of constitutively activated RET-MEN2B. A few percentage of RET proteins normally formed disulfide-bonded dimers in the cell, and osmotic stress promoted formation of these dimers. The disulfide-bonded dimers displayed higher levels of autophosphorylation and catalytic activity per molecule than did monomers. Osmotic stress also promoted activation and disulfide-bonded dimerization of the extracellular domain-depleted mutant RET (RET-PTC-1), suggesting that the target amino acid(s) for dimerization is located intracellularly rather than in the cysteine-rich region of the extracellular domain. In the mutant c-RET and RET-PTC-1 in which Cys987 of c-RET or Cys376 of RET-PTC-1 was replaced with Ala, the levels of intrinsic kinase activity were greatly reduced and barely increased in response to osmotic stress. Correspondingly, the Cys376-defective RET-PTC-1 did not form any demonstrable levels of dimers even after exposure to osmotic stress. In contrast, another RET-PTC-1 mutant that had a replacement of Cys365 with Ala mostly behaved like parental RET-PTC-1. These results suggest that Cys987 of c-RET or Cys376 of RET-PTC-1 plays a crucial role in maintenance and promotion of dimerization and activation of the RET kinases.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments
F