Affordable Access

The origin of chemical inhomogeneity in garnet electrolytes and its impact on the electrochemical performance

Authors
  • Brugge, RH
  • Pesci, FM
  • Cavallaro, A
  • Sole, C
  • Isaacs, MA
  • Kerherve, G
  • Weatherup, RS
  • Aguadero, A
Publication Date
Jul 02, 2020
Source
UPCommons. Portal del coneixement obert de la UPC
Keywords
License
Green
External links

Abstract

The interface between solid electrolytes and lithium metal electrodes determines the performance of an all-solid-state battery in terms of the ability to demand high power densities and prevent the formation of lithium dendrites. This interface depends strongly on the nature of the solid electrolyte surface in contact with the metallic anode. In the garnet electrolyte/Li system, most papers have focused on the role of current inhomogeneities induced by void formation in the Li metal electrode and the presence of insulating reaction layers following air exposure. However, extended defects in the solid electrolyte induced by chemical and/or structural inhomogeneities can also lead to uneven current distribution, impacting the performance of these systems. In this work, we use complementary surface analysis techniques with varying analysis depths to probe chemical distribution within grains and grain boundaries at the surface and in the bulk of garnet-type electrolytes to explain their electrochemical performance. We show that morphology, post-treatments and storage conditions can greatly affect the surface chemical distribution of grains and grain boundaries. These properties are important to understand since they will dictate the ionic and electronic transport near the interfacial zone between metal and electrolyte which is key to determining chemo-mechanical stability.

Report this publication

Statistics

Seen <100 times